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Abstract 
Detailed muscle information is valuable for developing increasingly complex biomechanical 

models of the larynx (e.g., size, direction, structure, shape at origin and insertion). This report 

contains data of four male and four female canine larynges, specifically presenting details of the 

intrinsic abductor and adductor musculature of the canine larynx: the posterior cricoarytenoid, the 

lateral cricoarytenoid and the interarytenoid muscles. Also presented are three-dimensional 

representations of the four to five muscle bundles of each muscle. From this resource, models can 

be developed to facilitate the study of the influence of the subglottis in voice production.  Updates 

to this memo can be downloaded at http://www.vocalfolds.org. 
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1. Introduction 

Laryngeal muscles, with the surrounding cartilages and joints, posture the vocal folds via 

length change and abduction/adduction.  Therefore, they are key to overall health (ventilation, 

swallowing, and effort closure of the airway
1
) and voice (vocal onset, self-sustained oscillation, 

intensity, and pitch
2-7

). Knowledge of laryngeal structure (e.g., cartilages and soft tissue) and 

musculature (e.g., intrinsic laryngeal muscles’ orientation, strength, and type) is needed to 

understand the mechanisms of posturing and phonation.  Previous studies
8
,
9-12

 of laryngeal 

muscles have largely been whole muscle descriptors, focusing on quantifying average size (i.e., 

length and cross-sectional area), overall orientation, and mechanical characteristics (e.g., stress-

strain relations and contraction times).   

Studies like these have provided a valuable foundation for understanding laryngeal muscles. 

However, whole muscle studies cannot be used to explain why portions of individual laryngeal 

muscles have specific posturing functions
13-15

. Neither can they be used to explain how to 

compensate for some pathologies or post-operative conditions which exclude portions of an 

individual muscle viable for laryngeal control
16;17

.  Further, inter-muscle spatial relations must be 

known to model conditions like laryngeal asymmetry, a common symptom of numerous laryngeal 

pathologies.   

http://www.vocalfolds.org/
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Specific laryngeal information is 

particularly important for laryngeal 

models (of both phonation and posturing), 

the goal of which is often to lay the 

foundation to predict vocal injury
18

.  If 

refinements were made to the basic 

assumptions and the anatomical 

information on which these models are 

based, the results of small variations in 

glottal therapy and phonosurgical 

interventions (such as vocal fold 

medialization) could be accurately and 

non-invasively simulated
19

. Thus, detailed 

distributed muscle information, which 

would enhance the understanding of vocal 

fold mechanics, is essential.  

The goal of this manuscript is to present fibre bundle orientations of the canine PCA, LCA, 

and IA. Specifically given are laryngeal muscle bundle origin and insertion points in three 

dimensions, and corresponding average muscle area. 

2. Data  

No new data muscle 

data were collected for the 

current report. Rather, 

existing data from the 

PCA, LCA, and IA from 

four male and four female 

canines were taken from 

the NCVS archives and 

lab notebooks.  

Laryngeal samples 

were excised postmortem. No animals were sacrificed for the work as the samples were obtained 

from previously sacrificed animals. Each larynx was first dissected to expose the muscles of 

interest.  The larynx was mounted by securing part of the trachea over a piece of tubing.  The 

cricoid cartilage and arytenoid cartilages were 

firmly fixed in the cadaveric position such that 

rotation and translation were eliminated.   

Spacial digitation was accomplished using a 

MicroSribe-EDX digitizer (Immersion Corp) 

with resolution of 0.2 mm, Figure 1.  From 

these samples, muscle bundles were isolated 

and the coordinates of origin and insertion were 

recorded (Fig 2).  On average, four to five 

muscle bundles were measured for the IA, 

while eight to ten were measured for the LCA 

 
Figure 1.  Previously unpublished image of experimental setup. 

   
(a) (b) (c) 

Figure 2.  Dissection and orientation of muscle bundles.  (a) left LCA. (b) left 

LCA and muscular process.  (c) left PCA. 

 
Figure 3.  Picture of dissected muscles from a sample.  
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and PCA (e.g., Fig.3).  The mass 

of each bundle was obtained by 

weighing each bundle to estimate 

the cross sectional area
20

. Only 

average muscle length, average 

cross-sectional area and average 

direction were reported 

previously
8
.  

Raw three-dimensional data were 

recorded in terms of a common 

coordinate system, Fig 4.  The 

coordinate system was described 

with respect to the cricoid 

cartilage. The raw data were read 

from the original text files and formatted as EXCEL Spreadsheets for easy access (canine1.xls, 

canine2.xls, canine3.xls, canine6.xls, canine7.xls, canine8.xls, canine9.xls).  These spreadsheets 

have the data from the 3-D digitizer in x, y and z coordinates. Most bundles were digitized twice 

before removal, so the final x, y, z origin and insertion coordinates were an average of the 

multiple measures. For orientation, each file contained an ‘origin’ coordinate and a ‘z-line’ set of 

points (which illustrate the z direction from the origin), and a ‘pure x’ which was a coordinate in 

the x direction.  From these, the rest of the data could be translated to the origin. Bundles were 

labeled by the muscle then the bundle number.  For example ‘lpca.1’ represents the first bundle of 

the left LCA muscle.  The weight of the bundle (in grams) was also given, assuming the density 

of muscle tissue of 0.001043 g/mm
3
 the area could be calculated.  Finally, the vocal process and 

the muscular process were labeled as vp and mp respectively. 

3. Using the Data 

Along with the tables, a spreadsheet is provided, along with Matlab scripts. The spreadsheet 

(MineckMuscleInfo.xls) shows where the data exist in other spreadsheets. With specific row and 

column numbers the Matlab script canine.m can plot the data in 3-D plots.  As currently 

uploaded, running the canine.m file with the other files in the same directory will load the 

orientation information from canine 9 and plot in a three-dimensional plot which can be rotated.  

Muscle data can then be plotted onto the plots using additional scripts. After running canine.m 

(and leaving the figure active in Matlab), the get9rlca.m script will draw the right LCA muscle 

origin and insertion surfaces in the plot illustrating how that may be done.  

4. Accompanying Files 

   File    Description 
TablesFromPaper.xls Spreadsheet version of the tables in Mineck et. al.

8
.  

canine1.xls Data from specimen #1, containing bundle origin, insertion, mass and origin data 

canine2.xls Data from specimen #2, containing bundle origin, insertion, mass and origin data 

canine3.xls Data from specimen #3, containing bundle origin, insertion, mass and origin data 

canine5.xls --data file not found in the archives, to be uploaded when found-- 

canine6.xls Data from specimen #6, containing bundle origin, insertion, mass and origin data 

canine7.xls Data from specimen #7, containing bundle origin, insertion, mass and origin data 

canine8.xls Data from specimen #8, containing bundle origin, insertion, mass and origin data 

   
(a) (b) (c) 

Figure 4.  Coordinate system with cricoid cartilage as the anchor. (a) xy 

plane.  (b) xz plane.  (c) yz plane. 

x: anterio-posterior, anterior or frontward positive; 

y: medio-lateral, rightward positive; 

z: inferio-superior, superior or upward positive),  
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canine9.xls Data from specimen #9, containing bundle origin, insertion, mass and origin data 

MineckMuscleInfo.xls Location of orientation data for #3,6,7,8,9. 

canine.m Matlab script that loads the orientation info from MineckMuscleInfo.xls and plots. 

get9rlca.m Loads LCA muscle bundle information and plots in 3-D. 

getMineck_f.m Dependent matlab script 

plotBundles_f.m Dependent matlab script 

plotSurface_f.m Dependent matlab script 

plotMuscles.m Dependent matlab script 
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